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Representations of the co:mponents of the elastic-polarization matrices and the Wiener elastic capacity are obtained in terms of 
the coefficients of the Kolosov-Muskhelishvili complex potentials and the coefficients of the conformal representation, which 
define the geometry of ma infinite elastic solid. A new integral characteristic of a rigid inclusion--the Roben matrix, whose 
components are dimensiortless, is proposed for use in applied problems. Examples of calculations, which correct formulae published 
previously elsewhere, are given. © 1998 Elsevier Science Ltd. All rights reserved. 

1. T H E  F O L A R I Z A T I O N  M A T R I C E S  A N D  W I E N E R  C A P A C I T I E S  

An asymptotic analysis of problems of the interaction between cracks and inclusions in an elastic solid 
leads to the need to investigate the integral characteristics of these defects, such as the elastic-polarization 
matrices and the Wiener capacities. The latter are extensions of the corresponding classical objects from 
the theory of  harmorJc functions [1]., In two-dimensional problems the Kolosov-Muskhelishvili methods 
enable one to calculate these quantities effectively. Nevertheless, a number of incorrect results have 
been published ([3], etc.), which is also our purpose to correct here. 

Suppose G is a region in the R 2 plane, bounded by a simple closed piecewise-continuous contour F. 
We will denote the closed region G U F by G and we will put ~ = R~\G. 

Consider the equations of the first fundamental problem of the two-dimensional theory of elasticity 

I~u(x)  + (X + ~t) grad div u(x) = 0, x = (xl, x2) ~ t2 

o'(n)(u;x) = p(x), x E F 

o.(n) = (G l l n  I + (~12n'2,(I21nl + (I22n2) t 

~sa = Z2iu (0~ul + 02u2 ) + P-Otuk + ~kut), ~k = 01 axk 

(1.1) 

(1.2) 

Here  L, ~t are the Lain6 constants, u = (ul, u2) t is the column vector of displacements, t is the sign of 
transposition, or (n) is the vector of the stresses on an area with unit normal n = (ul, u2) t to F (outward 
with respect to f2), (~ta are the components of the stress tensor, 81a is the Kronecker delta, and p = (Pl, 
p2) t is a specified vector of the external load. 

To obtain the correct boundary-value problem, it is necessary to add to relations (1.1) and (1.2) the 
2 2 1/2 condition which characterizes the behaviour of u(x) as I x I = (xl + x2) ~ oo. 

We know that a unique solution of problem (1.1), (1.2) (apart from a rigid displacement), whose 
components have no more than a logarithmic singularity at infinity, has the asymptotic representation 

f~T(2) ~T(l) l 3 
lit(x) = - T ( x ) F  - -~- ~ Y - ' ~  (x) - ~'--L--- (x)~ + ~. cj[V(J)(Vx)T(x)]t + 19(I x I-2), 

z ( OXl ox2 J j=i 

V~ =(alazl,0/ax2), x=(X+3p.)(X+~t) -1 

I x I--~ oo 

(1.3) 

Here  F = (FI, F2) t and M are the principal vector and principal moment (with respect to the origin 
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of coordinates) of the load p, Vx is the Hamilton operator, the column vectors Vq)(x) are such that 
V(1)(x) = (xl, 0), V(2)(x) = (O, x2), VO)(x) = (x2, x0, and T (k) are the columns of the matrix 

T(x)= X+lx. ]t,,  t,2l[ t ~ = - 2 x l n l x l + 2 x ~ l x 1 - 2  
8~tt(~,+2~t)Ut21 t22~, ti2 t21 = 2 x l x 2  [XI_ 2 (1.4) 

Matrix (1.4) defines the so-called [4] influence tensor in an unbounded elastic two-dimensional 
medium. Here T (k) is the displacement vector of points of the elastic half-plane, loaded with a unit point 
force applied at the origin of coordinates and directed along the Oxk (k = 1, 2) axis. The vectors ~7</)(x) 
(j = 1, 2, 3), together with the rotation v(a)(x) = (-x2, x0 form a basis in the space of homogeneous 
vector polynomials of the first degree. Note that the expression in the braces on the right in (1.3) can 
be written as [V(4)(Vx) T(x)] t. Using the method proposed previously [5] the constants cj can be expressed 
by the formula 

c~ = .[ U¢~)(x)'p(x)ds, (1.5) 
r 

where U q) are special solutions of homogeneousproblem (1.1), (1.2), characterized at infinity by the 
asymptotic form 

3 
UtJ)(x)= VO)(x) t + Y. Pjm[VO'O(Vx)T(x)] ' +O(I x I-2), Ix I---> "0 (1.6) 

m=l 

The symmetric matrix II ejm II}~ = 1 is called the elastic-polarization matrix [6]. Formula (1.5) 
enables integral representations to be derived for the coefficients Pjm. This justifies the term "integral" 
used in the title of this paper. 

When investigating the behaviour at infinity of the solutions of the second fundamental problem of 
the two-dimensional theory of elasticity, in which Eq. (1.1) and the boundary condition 

u(x)  = g ( x ) ,  x ~ F (1 .7)  

occur, where g = (gl, g2) t is a specified displacement vector, special solutions S 0) and S (z) of homogeneous 
problem (1.1), (1.7), defined at infinity by the asymptotic form 

s (k ) (x )  -- T(k)(x)  + D Ck) + O(I x I - l ) ,  I x I--o 00 (1.8) 

are used. 
The symmetric matrix l[ Dl (O II~k--~ with columns D 0) and D (2) is called the Wiener elastic capacity 

matrix [7]. 
The properties of these vectors, and also examples of their use were given in [6, 7]. 

2. AN EXPRESSION FOR THE COMPONENTS OF THE P O L A R I Z A T I O N  
MATRIX AND THE WIENER CAPACITY IN TERMS OF THE 

COEFFICIENTS OF THE COMPLEX POTENTIALS 

We will introduce the complex variable z = x~ +/x 2 and recall Kolosov's formula for the displacements 

21.t(u I + iu2)(Z) = xqh (z) - Ztp'l(z) - Vl (Z) (2.1) 

where the prime denotes differentiation with respect to z and the bar denotes the operation of complex 
conjugation. Assuming that the components of the stress tensor are bounded over the whole region f~, 
the following expansions [8, Section 36] hold for the complex potentials for sufficiently large I z J 

q ) l ( z ) = _ f l n z + a l z + a  ° + a...t + .... ~ l ( z ) = ~ f l n z + b l z + b  ° + b_~ +... (2.2) 
Z Z 

f =  FI + iF2 
2x(1 + x) 
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In the problem of calc_ulating the components of the polarization matrix (see (1.6)) we must put F1 
= F2 = 0 and also xa0 - b0 = 0. Correspondingly, substituting (2.2) into (2.1) we obtain 

- i  "- - ~-I "- ÷ ~ + . . .  (2 .3)  2~(u~  ~) + i v ( j  ) ) (z)  = ( ~ J )  - ~( ,J))z-  ~ J ) z  ~ t z t 2 t z r 

We will compare (11.6) and (2.3). The term V0)(x) t defines the coefficients a~ ) and blU) 

a~J)=l(~,+~t), bl~)=(-1)Jl.t, j = l , 2 ;  a~3)=0, b~3)=i2~t (2.4) 

Comparing terms of the order of I z 1-1 we have 

~(9~ + 2Ix) ~,(j) + (_l) k 2~(~, + 2g) Re -'(j) 
PJk= ~t ~'-1 ~,+k t " - t ,  k = l , 2  (2.5) 

2x(L + 21 x) rm ~(j) 
• " - I ,  J = 1 , 2 , 3  ~3 = X+~t 

Note that the coefficients b_0 I) must necessarily be real, since its imaginary part, apart from a 
factor (see, for ex~,mple, [8, Section 56a, Paragraph 5]) is equal to the moment of the load 
p(:)(x) = -tr(")(V0)(x)t), which is statically self-balanced. 

In the problem of calculating the components of the Wiener capacity matrix (see (1.8)) we must take 
al = bl = 0 in (2.2). Substituting (2.2) into (2.1) we obtain the relation 

F,(k) _ -F,(k) z 2 
21x(s~k) ÷iS~'))(Z)= X(Ft(k) +i~k))lnlzl+ 2~(1+~) +xa°"-b°Ck)+ '" ;  

n(l + ~) I z 12 

6 (k) = ~i~, k, 1 = 1, 2 (2 .6)  

Separating the sum T1 (k) + iT2 (k) on the right in (2.6) (see (1.4)), we compare it with (1.8). We 
obtain 

2l.t(DiCk) + iD~k)) = $1k + i82k ÷ xa0Ck) _ ~0Ck), k = 1, 2 (2 .7)  
2g(1 + x) 

Note that one of the complex constants a6 k), b6 k) can be equated to zero, thereby reducing a number 
of unknowns on both sides of (2.7) to equality. 

3. T H E  USE OF A C O N F O R M A L  T R A N S F O R M A T I O N  

Suppose the region D is in the form of the exterior I ~ I > 1 of the unit circle with the conformal 
representation 

z = 0~(~) = c~+ c1~ -l + c2~-2 + ... (3.1) 

Substituting the expression from the right-hand side of (3.1) into (2,2) instead of z we obtain 

tp(~) = tpl [tO(~) ] --" - f i n  ~ + AI~ + A0 + A-t~- l+. . .  (3 .2)  

• (~) = W[~)] =,~ ~ln ~ + B~ + Bo + B_~-~+... 

A1 = ca1, B1 = cbl (3.3) 

Here  the following relations occur between the coefficients of the potentials cp(~) and %(z), V(~) and 
Vl(Z) 
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ac = f lnc+l&, b. =-xfInc+&,; u_~ =cA_,-c,A,, 6, =cB_, -c,B, (3.4) 

Hence, instead of (2.5) we have the following expressions for the components of the polarization 
matrix 

pik = @‘i 2p) (&{I _ cl@)) + (-l)k 2’~~~ &(c@ - qA,(j)), k E 42 

p_ = 270+ WI 
j3 h+P 

h(cA!{) -clAt(‘)), j = I, 2,3 

(3.5) 

The constants,4y), By), by (2.4) and (3.3), take the values 

A,“) = ;(& + p)c, @j) = (-l)$c, j = 1,2; A,‘3’ = 0, Bf3’ = i2p.c (3.6) 

Correspondingly, we can derive the following formula for the components of the Wiener capacity 
matrix, which generalizes (2.7) 

2p(lp + Df’) = - 61k+i6zk (1-2xInIcI)+~~)-~~~), k=l,2 
2X(1 + x) P-7) 

Suppose now that 0 is the transform of the interior ( l, ) c 1 of the unit circle with a conformal 
representation corresponding to replacing c by c-t on the right-hand side of (3.1). As before, we 
express the components of the polarization matrix and the Wiener capacity in terms of the potential 
coefficients and the conformal representation. For example, for the components of the polarization 
matrix re resentations hold which differ from (3.5) b 
by ,o’) ,6 and j.@, PC;) respectively, where ai 0’) d 8, 

the replacement of A-y), A?) and Bj), By) 

of thk po&tials c$) and py), i.e. 
an p, are the coefficients of c-t in the expansions 

These formulae enable one to use ready results, obtained previously [lo, etc.]. 

4. EXAMPLES 

Suppose the region R, which does not contain the origin of coordinates, is the transform of the exterior of the 
unit circle in the conformal representation 

2 = o(C) = c~+c,~--’ +czc-* (4.1) 

In the problem of constructing the matrix of the Wiener elastic capacity, the potentials (3.2) can be written as 

(4.2) 

where &) and ~6~) are holomorphic functions outside the unit circle, including au infinitely distant point, i.e. 

~p&~‘(o = dk) + Aj)<-’ + .a., yp(Q= Bp+Ey~-* f..., k=1,2 (4.3) 

Using the fact that one of the constantsA&k), Bhk' can be assumed to be equal to zero, we put&) = 0 (k = 1,2). 
The homogeneous boundary condition (1.7) for the complex potentials (see [8, Section 51]), taking (4.2) into account, 
has the form 

-- 
xq$k’(a)- %k -is2k OS, lal_ 1 

27c(l+ XI o’(a) (4.4) 
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Here, by (4.1) 

~ ( G )  _ c 133 +ci(I +c 2 
~'(G) - G2(C'-C'I O2 - 2~2133) 

The following functional Muskhelishvili functional equation for determining the function ~p~k) corresponds to 
boundary condition (4.4) 

=(o) do t =(o) (4.5) 

where ~ is an arbitrary ~oint outside the unit circle and 3' is the circle I o I = 1. Since the expression [o)(G)/(o'(~)] q~k)'(~) 
is the boundary value of the function 

c;  3 + el; + c 2 _--T~( I "~ 

which is holomorphic inside the unit circle, the integral on the left-hand side of (4.5) is equal to zero. On the other 
hand, the expression under the integral on the right-hand side in (4.5) is the boundary value of the function 

r o3 (~)  c~3+ct~+c2 c21 c I c2c" I . 

~ = ,, . . . .  +~+----~- C~+... (4.6) 

which is holomorphic inside the unit circle, with the exception of the origin of coordinates, where it has a pole of 
the first order with principal part c~-~2~ -~. Consequently, by (4) from [8, Section 80], we obtain 

2xx(1 + x) ~ (4.7) 

We will now consider boundary condition (4.4). We substitute expression (4.7) into it and take into account 
expansion (4.6), which is applicable when I ~ I = 1. We arrive at a relation in which, by comparing the coefficients 
of ~0, we obtain B~ k). Finally, formula (3.7) gives 

2tt(D~ *) +iD2(~') = - / i l k  +!82k (1-2xln  I c1 -1  Ic2 12 ~ -8lIe -i~)2k cc--L' 
2/I(l+x) ~, x Icl 2 ) 2X(1+~¢) Icl 

In expanded form, for the case (4.1), the matrix of the Wiener capacity looks like (compare with [2], formula 
(6), where, in particular, there are no terms with the factor I c212) 

Io ') o(2)1 R 2)I 
4/Ip'(I+X)ID2(I) D~2)]l=2xlnlclE-| ~ 1 " ]  |P,~' R(2)~ (4.8) 

+ ~ , - t )  K e / - - . - - ~ / - - - - - - ~ ,  = R 2) = 
\ lcl" ) x leP 

(4.9) 

where E is the identity matrix. 
In the problem of calculating the components of the elastic polarization matrix, we can represent the potentials 

(3.2) as follows: 

(p(J)(;) = A~J);+q)(0J)(~}, ~(J)(~) = B~J)~+~(0J)(; ) 

where q~') and W~') are functions, holomorphic outside the unit circle, including an infinitely distant point, possessing 
expansions of the form (4.3). In view of the asymptotic form (1.6) the constantsA0 q) and B~ ) must be related by 
the expression xA0 q) -/}~Y) = 0 (j = 1, 2, 3). In the same way as above, we obtain (compare with [3], where, in 
particular, there are no terms with the factor I cz 12) 

Aq) -Z,U) (4.10) - --  I 
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B . . . . . .  (Icl 2 IC112 21c212 "~ .-:-.(Of Ic 112 21c212 ') =(1) ~l 
'~' = - A ~ J ' / _ - - 7 ~ + - - - - S ~ - - + ~ / - A I ,  l l +  , -7-~-+--7S~/- /~  I - - ~. c c c ) ~. Icl Icl .~ c 

Formulae (4.10), (3.5) and (3.6) solve the problem of determining the components of the elastic polarization 
matrix in case (4.1). 

5. T H E  R O B E N  M A T R I X  

The quantity I c l, where c is the coeffici_ent in expansion (3.1), is called (see [1, Section 1.3]) the external 
conformal radius of the clos_ed region G, and has dimension of length. If r is the radius of t__he largest 
circle which is contained in G and R is the radius of the smaller circle which is contained in G, we have 
the limits: r ~< I c I ~< R (see, for example, [10, Section 4, problem No. 123]). 

In applied investigations it is preferable to write the asymptotic formula (1.8) in the form 

S t k ) ( x ) -  T Ic l  8x~t(~, + 2~t) ~ , l x l )  

where the logarithm of the dimensionless quantity is calculated. 
The symmetric matrix II Rt (k) II~k=1 with columns R (1) and R (2) is called the Roben matrix, by analogy 

with the Roben constant [11, Section 3, Chapter 4]. 

The mappingz = o~(~) = I c I(~ + m~ -1) transfers the exterior of the unit circle into the region f2, the boundary 
of which is an ellipse with semiaxes [ c I(1 + m) and I c [(1 - m). Using the explicit solution [8, Section 83a], we 
obtain R = diag { 1 + rn, 1 - m}. This matrix uses the property of positive definiteness when ] m I = 1, corresponding 
to the degeneration of the ellipse into a segment. 

If the geometry of the region Q is specified by the conformal representation (4.1), the elements of the Roben 
matrix are defined by (4.9). We will show that when c2 ~ 0 the Roben matrix is positive definite (this cannot be 
proved for the general case). In fact, by the area theorem (see, for example, [11, Chapter 2, Section 4, p. 49]) 

I cl 2 ~1 c 112 +21c 212 

Consequently I C1 c-1 I < 1 and the following relations hold 

(5.1) 

1 I¢11 l l c  212 I f  Ic II 2"~ 1 Ic 212 I f  Ic~12 21c 212 
- > -  1 . . . . . .  l ( 5 . 2 )  

The expression on the right of the equality sign in (5.2) is positive by virtue of (5.1) and the condition × > 1. 
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